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Nonrelativistic Geodesic Motion
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Gennadi Sardanashvily3

Received May 31, 1999

We show that any second-order dynamic equation on a configuration space X ®
R of nonrelativistic time-dependent mechanics can be seen as a geodesic equation
with respect to some (nonlinear) connection on the tangent bundle TX ® X
of relativistic velocities. We compare relativistic and nonrelativistic geodesic
equations, and study the Jacobi vector fields along nonrelativistic geodesics.

1. INTRODUCTION

To provide a geometric formulation of nonrelativistic mechanics, one

usually tries to introduce a metric on a configuration space. Following Cartan’ s

idea, we show that any second-order dynamic equation of nonrelativistic

mechanics is equivalent to a particular geodesic equation on a phase space

of relativistic 4-velocities. The key point is that relativistic and nonrelativistic
geodesic equations are defined on different subspaces of the same 4-velocity

phase space. One can perform a relativization of nonrelativistic dynamic

equations by means of their extension onto the relativistic subspace of the

4-velocity phase space. However, such an extension fails to be unique. In

Section 4, we will consider the most important examples. Treating nonrelativ-

istic dynamic equations as the geodesic ones, we can study them by means
of well-known differential geometric methods. In particular, Jacobi vector

fields along nonrelativistic geodesics can be introduced in a natural way, and

conjugate points of these geodesics can be investigated (see Section 5).
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Let X be a 4-dimensional world manifold of a relativistic theory, coordi-

nated by (x l ). Then the tangent bundle TX of X plays the role of a 4-

velocity phase space. By a relativistic equation of motion usually is meant
a geodesic equation

xÈ m 5 K m
l (x n , xÇ n )xÇ l (1)

with respect to a (nonlinear) connection

K 5 dx l ^ ( - l 1 K m
l - Ç m ) (2)

on the tangent bundle TX ® X. It is supposed additionally that there is a
pseudo-Riemannian metric g of signature ( 1 , 2 2 2 ) on X, and that a geodesic

vector field does not leave the subbundle of relativistic hyperboloids

Wg 5 {xÇ l P TX ) g l m xÇ l x m 5 1} (3)

in TX. It suffices to require that the condition

( - l g m n xÇ
m 1 2g m n K

m
l )xÇ l xÇ n 5 0 (4)

holds for all tangent vectors which belong to Wg , (3). Of course, the Levi-

Civita connection { l
m

n } of the metric g fulfills the condition (4). Any connec-

tion K on the tangent bundle TX ® X can be written as

K m
l 5 { l

m
n }xÇ n 1 s m

l (x l , xÇ l )

where the soldering form s 5 s m
l dx l ^ - Ç m plays the role of an external

force. Then the condition (4) takes the form

g m n s m
l xÇ l xÇ n 5 0 (5)

Let now a world manifold X admit a projection X ® R, where R is a

time axis. One can think of the bundle X ® R as being the configuration

space of nonrelativistic mechanics (Massa and Pagani, 1994; Mangiarotti and

Sardanashvily, 1998; Sardanashvily, 1998). It is provided with the adapted
bundle coordinates (x0, xi), where the transition functions of the temporal

one are x8 0 5 x0 1 const. The corresponding velocity phase space is the

first-order jet manifold J1X of X ® R, coordinated by (x l , xi
0). There is the

canonical imbedding of J1X onto the affine subbundle of the tangent bundle

TX [see (1 0) below], given by the coordinate conditions

xÇ 0 5 1, xÇ i 5 xi
0 (6)

Then one can regard (6) as the 4-velocities of a nonrelativistic system. The

relation (6) differs from the familiar relation between 4- and 3-velocities

of a relativistic system. It follows that the 4-velocities of relativistic and



Nonrelativistic Geodesic Motion 2705

nonrelativistic systems occupy different subbundles of the tangent bundle

TX. The key point of our consideration is the following.

Proposition 1. Let J2X be the second-order jet manifold of X ® R,

coordinated by (x l , xi
0, xi

00). Any second-order dynamic equation

xi
00 5 j i(x0, x j, x j

0) (7)

of nonrelativistic mechanics on X ® R is equivalent to the geodesic equation

xÈ 0 5 0, xÇ 0 5 1

xÈ i 5 K i
0xÇ

0 1 K i
jxÇ

j (8)

with respect to a connection K on TX ® X which fulfills the conditions

K 0
l 5 0, j i 5 K i

0 1 x j
0K

i
j ) xÇ 0 5 1, xÇ

i 5 x
i
0 (9)

Thus, we observe that both relativistic and nonrelativistic equations of

motion can be seen as the geodesic equations on the same tangent bundle
TX. The difference between them lies in the fact that their solutions live in

the different subbundles (3) and (6) of TX . At the same time, relativistic

equations, expressed via the 3-velocities xi
0 5 xÇ i/xÇ 0, tend exactly to the nonrel-

ativistic equations on the subbundle (6) when xÇ 0 ® 1, g 00 ® 1, i.e., only

when nonrelativistic mechanics and the nonrelativistic approximation of a

relativistic theory coincide.

2. GEOMETRY OF NONRELATIVISTIC MECHANICS

This section is devoted to the proof of Proposition 1. Let a fiber bundle

X ® R, coordinated by (x0, xi) be a configuration space of nonrelativistic

mechanics. Its velocity phase space J1X is provided with the adapted coordi-
nates (x0, xi, xi

0). Recall that J1X comprises the equivalence classes j1x0c of

sections of X ® R which are identified by their values ci(x0) and the values

of their derivatives - 0c
i(x0) at points x0 P R, i.e., xi

0( j1c) 5 - 0c
i(x0). There

is the canonical imbedding

l : J1X , TX, l 5 - 0 1 xi
0- i (1 0)

over X. From now on, we will identify J1X with its image in TX . It is an

affine bundle modeled over the vertical tangent bundle VX of X ® R.
In particular, every connection on a bundle X ® R is given by the

nowhere-vanishing vector field

G : X ® J1X , TX, G 5 - 0 1 G i - i (11)

on X. It can be treated as a reference frame in nonrelativistic mechanics.
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Every connection G i (11) defines an atlas of local constant trivializations of

the bundle X ® R and the associated coordinates (x0, xi) on X such that the

transition functions xi ® x8i are independent of x0 and vice versa (Mangiarotti
and Sardanashvily, 1998; Mangiarotti et al., 1999). We find G i 5 0 with

respect to this coordinate atlas, also called a reference frame. In particular,

there is one-to-one correspondence between the complete connections G (11)

and the trivializations X > R 3 M of the configuration bundle X.

A nonrelativistic second-order dynamic equation on a configuration

bundle X ® R is defined as the geodesic equation

xi
00 5 j i(x m , xj

0)

for a holonomic connection

j 5 - 0 1 xi
0 - i 1 j i(x m , xi

0) - 0
i (12)

on the jet bundle J1X ® R, which takes its values into the second-order jet

manifold J2X. It has the transformation law

j 8i 5 ( j j - j 1 x j
0x

k
0 - j - k 1 2x j

0 - j - 0 1 - 2
0)x8i

Let us consider the relationship between the holonomic connections j
(12) on the jet bundle J1X ® R and the connections

g 5 dx l ^ ( - l 1 g i
l - 0

i ) (13)

on the affine jet bundle J1X ® X. The connections g have the transforma-

tion law

g 8i
l 5 ( - j x8i g j

m 1 - m x8i
0 )

- x m

- x8 l
(14)

Proposition 2. Any connection g (13) on the affine jet bundle J1X ®
X defines the holonomic connection

j g 5 - 0 1 xi
0 - i 1 ( g i

0 1 x j
0 g i

j) - 0
i (15)

on the jet bundle J1X ® R (De LeoÂn and Rodrigues, 1989; Mangiarotti and

Sardanashvily, 1998; Mangiarotti et al., 1999).

It follows that every connection g (13) on the affine jet bundle J1X ®
X yields the dynamic equation

x i
00 5 g i

0 1 x j
0 g i

j (16)

on the configuration space X. Of course, different dynamic connections may

lead to the same dynamic equation (16). The converse assertion is the follow-

ing (Crampin et al., 1996; Mangiarotti and Sardanashvily, 1998; Mangiarotti

et al., 1999).
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Proposition 3. Any holonomic connection j (12) on the jet bundle J1X ®
R defines a connection

g 5 dx 0 ^ [ - 0 1 ( j i 2 1±2 x
j
0-

0
j j i) - 0

i ] 1 dx j ^ [ - j 1 1±2 - 0
j j i - 0

i ] (17)

on the affine jet bundle J1X ® X.

The connection g (17), associated with a dynamic equation, possesses

the property

g k
i 5 - 0

i g k
0 1 x j

0 - 0
i g k

j

which implies the relation - 0
j g k

i 5 - 0
i g k

j . Such a connection g is called

symmetric.

Let g be a connection (13) and j g the corresponding dynamic equation
(15). Then the connection (17) associated with j g takes the form

g j g
k
i 5 1±2 ( g k

i 1 - 0
i g k

0 1 xj
0 - 0

i g k
j ), g j g

k
0 5 j k 2 xi

0g j g
k
i

It is readily observed that g 5 g j g if and only if g is symmetric.
Now let us prove Proposition 1. We start from the relation between the

connections g on the affine jet bundle J1X ® X and the connections K, (2)

on the tangent bundle TX ® X of the configuration space X. Let us consider

the diagram

J1
X J1X Ð ®

J1 l
J1

X TX

(18)-
½
½

-
½
½

g K

J 1X ® l TX

where J1
X J1X is the first-order jet manifold of the affine jet bundle J1X ® X

with coordinates (x l , xi
0, xi

m 0) and J1
X TX is the first-order jet manifold of the

tangent bundle TX ® X, coordinated by (x l , xÇ l , xÇ lm ). The jet prolongation
over X of the canonical imbedding l (1 0) reads

J1 l : (x l , xi
0, xi

m 0) j (x l , xÇ 0 5 1, xÇ i 5 xi
0, xÇ 0m 5 0, xÇ im 5 xi

m 0)

We have

J1 l + g : (x l , xi
0) j (x l , xÇ 0 5 1, xÇ i 5 xi

0, xÇ 0m 5 0, xÇ im 5 g i
m )

K + l : (x l , xi
0) j (x l , xÇ 0 5 1, xÇ i 5 xi

0, xÇ 0m 5 K 0
m , xÇ i

m 5 K i
m )

It follows that the diagram (18) can be commutative only if the components

K 0
m of the connection K on TX ® X vanish. Since the transition functions

x0 ® x10 are independent of xi, a connection K with the components K 0
m 5
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0 can exist on the tangent bundle TX ® X. In particular, let (x0, xi) be a

reference frame. Given an arbitrary connection K (2) on TX ® X, one can

put K 0
m 5 0 in order to obtain a desired connection

K 5 dx l ^ ( - l 1 K i
l - Ç i) (19)

obeying the transformation law

K 8i
l 5 ( - j x8i K j

m 1 - m xÇ 8i)
- x m

- x8 l (2 0)

Now the diagram (18) becomes commutative if the connections g and K
fulfill the relation

g i
m 5 K i

m (x l , xÇ 0 5 1, xÇ i 5 xi
0) (21)

It is easily seen that this relation holds globally because the substitution of

xÇ i 5 xi
0 into (2 0) restates the transformation law (14). In accordance with the

relation (21), a desired connection K is an extension of the section J1 l + g
of the affine bundle J1

XTX ® TX over the closed submanifold J1X , TX to

a global section. Such an extension always exists, but it is not unique. Thus,

we state the following.

Proposition 4. In accordance with the relation (21), every dynamic

equation on the configuration space X can be written in the form

xi
00 5 K i

0 + l 1 x j
0 K i

j + l (22)

where K is a connection (19) on the tangent bundle TX ® X.

Let us consider the geodesic equation (8) on TX with respect to the

connection K. Its solution is a geodesic curve c(t) also satisfying the dynamic

equation (7) and vice versa. It states Proposition 1.
The above proof also leads to the following converse of Proposition 1.

Proposition 5. Given a reference frame, any connection K (2) on the

tangent bundle TX ® X defines a connection g on the affine jet bundle J1X ®
X and the dynamic equation (22) on the configuration space X.

Remark. Note that any second-order dynamic equation on Q ® R also

defines a linear connection on the tangent bundle TJ1Q ® J1Q (Massa and

Pagani, 1994; Crampin et al., 1996; Mangiarotti and Sardanashvily, 1998).
A conservative second-order dynamic equation on a manifold Z also defines

a connection on TZ ® Z, but it is a geodesic equation with respect to this

connection if and only if this connection is a spray (Marmo et al., 199 0;

Morandi et al., 199 0; Mangiarotti and Sardanashvily, 1998).
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3. QUADRATIC DYNAMIC EQUATIONS

From the physical viewpoint, the most interesting dynamic equations

are the quadratic ones, i.e.,

j i 5 ai
jk(x

m )x j
0x

k
0 1 bi

j(x
m ) x j

0 1 f i(x m ) (23)

This property is coordinate independent due to the affine transformation law

of coordinates xi
0. Then, it is readily observed that the corresponding connec-

tion g (17) is affine:

g 5 dx l ^ [ - l 1 ( g i
l 0(x

n ) 1 g i
l j(x

n )x j
0) - 0

i ]

and vice versa. This connection is symmetric if and only if g i
l m 5 g i

m l .

Lemma 6. There is one-to-one correspondence between the affine con-

nections g on the affine jet bundle J1X ® X and the linear connections K
(19) on the tangent bundle TX ® X. This correspondence is given by the

relation (21), which takes the form

g i
m 5 g i

m 0 1 g i
m j x j

0, g i
m l 5 Ki

m l

In particular, if an affine connection g is symmetric, so is the correspond-

ing linear connection K. Then we come to the following corollaries of Proposi-

tions 1 and 5.

Proposition 7. Any quadratic dynamic equation

xi
00 5 ai

jk(x
m ) x j

0x
k
0 1 bi

j(x
m ) xi

0 1 f i(x m ) (24)

is equivalent to the geodesic equation

xÈ 0 5 0, xÇ 0 5 1

xÈ i 5 ai
jk(x

m ) xÇ kxÇ j 1 bi
j(x

m )xÇ jxÇ 0 1 f i(x m )xÇ 0xÇ 0 (25)

for the symmetric linear connection

K 5 dx l ^ ( - l 1 K m
l n (x

a )xÇ n - Ç m )

on TX ® X, given by the components

K0
l n 5 0, Ki

0j 5 f i , K i
00 5 K i

j 0 5
1

2
b i

j , K i
j k 5 ai

j k (26)

Proposition 8. Conversely, any linear connection K on the tangent bundle

TX ® X defines the quadratic dynamic equation

xi
00 5 Ki

00 1 (K i
0j 1 K i

j 0) x j
0 1 K i

jk x j
0, xk

0

written with respect to a given reference frame (x0, xi)
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The geodesic equation (25), however, is not unique for the dynamic

equation (24).

Proposition 9. Any quadratic dynamic equation (24), being equivalent

to the geodesic equation with respect to the linear connection K (26), is also

equivalent to the geodesic equation with respect to an affine connection K 8
on TX ® X which differs from K (26) in a soldering form s on TX ® X
with the components

s 0
l 5 0, s i

k 5 hi
k 1 (s 2 1)hi

kxÇ
0, s i

0 5 2 shi
kxÇ

k 2 hi
0xÇ

0 1 hi
0

where s and hi
l are local functions on X.

In particular, it follows that, if there is no topological obstruction and

the Minkowski metric h on TX exists, a nonrelativistic dynamic equation

xi
00 5 bi

j (x
m )xj

0 1 f i(x m ) (27)

gives rise to the geodesic equation

xÈ 0 5 0, xÇ 0 5 1

xÈ i 5 bi
j (x

m ) xÇ j 1 f i(x m )xÇ 0 (28)

The above-mentioned ambiguity often occurs. The nonrelativistic

dynamic equations (27) can be represented as both the geodesic equation

(28) and the one (25), where a 5 0. The first is the case for external forces,
e.g., an electromagnetic theory, while the latter is that for a gravitation theory.

4. EXAMPLES

In order to compare relativistic and nonrelativistic dynamics, one should
consider a pseudo-Riemannian metric on TX, compatible with the fibration

X ® R. Note that R is a time of nonrelativistic mechanics. It is one for all

nonrelativistic observers. In the framework of a relativistic theory, this time

can be seen as a cosmological time. Given a fibration X ® R, a pseudo-

Riemannian metric on the tangent bundle TX is said to be admissible if it is

defined by a pair (gR, G ) of a Riemannian metric gR on X and a nonrelativistic
reference frame G (11), i.e.,

g 5
2 G ^ G

) G ) 2 2 gR, ) G ) 2 5 gR
m n G m G n 5 g m n G m G n (29)

in accordance with the well-known theorem (Hawking and Ellis, 1973). The

vector field G is timelike relative to the pseudo-Riemannian metric g (29), but

not with respect to other admissible pseudo-Riemannian metrics in general.
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As we have shown above, given a reference frame (x0, xi), any connection

K(x l , xÇ l ) (2) on the tangent bundle TX ® X defines the connection K on TX
® X with the components

K 0
l 5 0, K i

l 5 K i
l (3 0)

It follows that, given a fibration X ® R, every relativistic equation of motion

(1) yields the geodesic equation (8) and, consequently, has the counterpart

xi
00 5 K i

0(x
l , 1, xk

0) 1 K i
j (x

l , 1, xk
0)x

i
0

(7) in nonrelativistic mechanics. Note that, written with respect to a reference

frame (x0, xi), the connection K (9) and the corresponding geodesic equation

(8) are well defined relative to any coordinates on X, while the dynamic
equation (1) is done relative to arbitrary coordinates on X, compatible with

the fibration X ® R. The key point is that, for another reference frame (x0,

x8i) with time-dependent transition functions xi ® x8i, the same connection

K (2) on TX sets another connection K8 on TX ® X with the components

K8 0
l 5 0, K8i

l 5 1 - x8i

- xj Kj
m 1

- x8i

- x m 2 - x m

- x8 l
1

- x8i

- x0

- x m

- x8 l
K0

m

while the connection K (3 0) has the components

K8 0
l 5 0, K8i

l 5 1 - x8i

- x j Kj
m 1

- x8i

- x m 2 - x m

- x8 l

relative to the same reference frame. This illustrates the obvious fact that a

nonrelativistic approximation is not relativistic invariant (see, e.g., LeÂvy-

Leblond, 1967).

The converse procedure is more intricate. First, a nonrelativistic dynamic
equation (7) is brought into the geodesic equation (8) with respect to the

connection K (9). A solution is not unique in general. Then, one finds a pair

(g, K ) of a pseudo-Riemannian metric g and a connection K on TX ® X
such Ki

l 5 Ki
l and the condition (4) is fulfilled.

Given a coordinate system (x0, xi) compatible with the fibration X ®
R, let us consider a nondegenerate quadratic Lagrangian

L 5
1

2
m ij(x

m )xi
0x

j
0 1 ki (x

m )xi
0 1 f(x m ) (31)

where m ij is a Riemannian mass tensor. Similarly to Lemma 6, one can show

that any quadratic polynomial on J1X , TX is extended to a bilinear form

on TX. Then the Lagrangian L (31) can be written as
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L 5 2
1

2
g a m x a

0x
m
0 , x0

0 5 1 (32)

where g is the metric

g00 5 2 2f, g0i 5 2 ki , gij 5 2 m ij (33)

on X. The corresponding Lagrange equation takes the form

xi
00 5 2 (m 2 1)ik{ l k n }x8 l

0 x n
0, x0

0 5 1 (34)

where

{ l m n } 5 2
1

2
( - l g m n 1 - n g m l 2 - m g l n )

are the Christoffel symbols of the metric (33). Let us assume that this metric

is nondegenerate. By virtue of Proposition 7, the dynamic equation (34) can

be brought into the geodesic equation (25) on TX, which reads

xÈ 0 5 0, xÇ 0 5 1

xÈ i 5 ({ l
i
n } 2

gi0

g00 { l
0
n })xÇ l xÇ n (35)

Let us now bring the Lagrangian (31) into the form

L 5
1

2
mij(x

m )(xi
0 2 G i)(xj

0 2 G j) 1 f 8(x m ) (36)

where G is a Lagrangian connection on X ® R. This connection G defines

an atlas of local constant trivializations of the bundle X ® R and the corre-

sponding coordinates (x0, xi) on X such that the transition functions xi ® x8i

are independent of x 0, and G i 5 0 with respect to (x0, xi). In this coordinates,
the Lagrangian L (36) reads

L 5
1

2
m ijx

i
0x

j
0 1 f 8(x m )

One can think of its first term as the kinetic energy of a nonrelativistic system

with the mass tensor mij relative to the reference frame G , while ( 2 f 8) is a

potential. Let us assume that f 8 is a nowhere-vanishing function on X, i.e.,
the metric (33) is nondegenerate. Then the Lagrange equation (34) takes

the form

xi
00 5 { l

i
n }x l

0x
n
0, x0

0 5 1

where { l
i
n } are the Christoffel symbols of the metric (33) whose components

with respect to the coordinates (x0, xi) read
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gij 5 2 mij, g 0i 5 0, g 00 5 2 2f 8 (37)

This metric is Riemannian if f 8 . 0 and pseudo-Riemannian if f 8 , 0. Then
the spatial part of the corresponding geodesic equation

xÈ 0 5 0, xÇ 0 5 1

xÈ i 5 { l
i
n }xÇ l xÇ n

is exactly the spatial part of the geodesic equation with respect to the Levi-

Civita connection of the metric (37) on TX. It follows that, as declared

above, the nonrelativistic dynamic equation (37) describes the nonrelativistic

approximation of the geodesic motion in the Riemannian or pseudo-Rieman-

nian space with the metric (37). Note that the spatial part of this metric
is the mass tensor, which may be treated as a variable (Mangiarotti and

Sardanashvily, 1998).

Conversely, let us consider a geodesic motion

xÈ m 5 { l
m

n }xÇ l xÇ n (38)

in the presence of a pseudo-Riemannian metric g on a world manifold X.
Let (x 0, xi) be local hyperbolic coordinates such that g 00 5 1, g 0i 5 0. These

coordinates define a nonrelativistic reference frame for a local fibration X ®
R. Then Eq. (38) has the nonrelativistic limit

xÈ 0 5 0, xÇ 0 5 1

xÈ i 5 { l
i
n }xÇ l xÇ n (39)

which is the Lagrange equation for the Lagrangian

L 5
1

2
m ij x

i
0x

j
0

describing a free nonrelativistic mechanical system with the mass tensor

mij 5 2 gij. Relative to another frame (x0, xi, (x0, x j)) associated with the same

local splitting X ® R, the nonrelativistic limit of Eq. (38) keeps the form

(39), whereas the nonrelativistic equation (39) is brought into the Lagrange

equation (35) for the Lagrangian

L 5
1

2
mij(x

m )(xi
0 2 G i)(x j

0 2 G j) (4 0)

This Lagrangian describes a mechanical system in the presence of the inertial

force associated with the reference frame G . The difference between (35)

and (39) shows that a gravitational force cannot model an inertial force in

general. Nevertheless, if the mass tensor in the Lagrangian L (40) is indepen-



2714 Giachetta, Mangiarotti, and Sardanashvily

dent of time, the corresponding Lagrange equation is a spatial part of the

geodesic equation in a pseudo-Riemannian space.

In view of the ambiguity that we have mentioned, the relativization
(32) of an arbitrary nonrelativistic quadratic Lagrangian (31) may lead to

confusion. In particular, it can be applied to a gravitational Lagrangian (36)

where f 8 is a gravitational potential. An arbitrary quadratic dynamic equation

can be written in the form

xi
00 5 2 (m 2 1)ik{ l k m }x l

0 x m
0 1 bi

m (x n )x m
0, x0

0 5 1

where { l k m } are the Christoffel symbols of some admissible pseudo-Rieman-

nian metric g, whose spatial part is the mass tensor ( 2 mik), while

bi
k(x

m )xk
0 1 bi

0(x
m ) (41)

is an external force. With respect to the coordinates where g 0i 5 0, one may
construct the relativistic equation

xÈ m 5 { l
m

n }xÇ l xÇ n 1 s m
l xÇ l (42)

where the soldering form s must fulfill the condition (5). It holds only if

gikb
i
j 1 gijb

i
k 5 0,

i.e., the external force (41) is the Lorentz-type force plus some potential one.

Then we have

s 0
0 5 0, s 0

k 5 2 g 00gkj bj
0, s i

0 5 bi
0

The relativization (42) exhausts almost all familiar examples. It means

that a wide class of mechanical systems can be represented as a geodesic

motion with respect to some affine connection in the spirit of the above-

mentioned idea of Cartan.

To complete our exposition, we point out also another ª relativizationº
procedure. Let a force j i(x m ) in the nonrelativistic dynamic equation (7) be

a spatial part of a 4-vector j l in the Minkowski space (X, h ). Then one can

write the relativistic equation

xÈ l 5 j l 2 h a b z b xÇ a xÇ l (43)

This is the case, e.g., for a relativistic hydrodynamics that we meet usually
in the literature on a gravitation theory. However, this is not a geodesic

equation, and the nonrelativistic limit xÇ 0 5 1 of Eq. (43) does not coincide

with the initial nonrelativistic equation. There are also other variants of

relativistic hydrodynamic equations (Kupershmidt, 1992).
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5. NONRELATIVISTIC JACOBI FIELDS

Let us consider the quadratic dynamic equation (23) and the equivalent
geodesic equation (8) with respect to the symmetric linear connection K (26).

Its curvature

R l m a
b 5 - l K m a

b 2 - m K l a
b 1 K l g

b K m a
g 2 K m g

b K l a
g

has the temporal component

R l m 0
b 5 0 (44)

It should be emphasized that our expressions for connections and the curvature
differ in a minus sign from those usually used. Then the equation for a Jacobi

vector field u along a geodesic reads

xÇ b xÇ m ( ¹ b ( ¹ m u a ) 2 R l m a
b u l ) 5 0, ¹ b xÇ a 5 0 (45)

where ¹ denotes covariant derivatives relative to the connection K (Kobayashi
and Nomizu, 1969). Due to the relation (44), Eq. (45) for the temporal

component u 0 of a Jacobi field takes the form

xÇ b xÇ m ( - m - b u 0 1 K m g
b - g u0) 5 0

We chose its solution

u0 5 0 (46)

because all nonrelativistic geodesics obey the constraint xÇ 0 5 0.

In the case of a quadratic Lagrangian L, Eq. (45) coincides with the
Jacobi equation

u j d 0( - j - Ç i L) 1 d 0(uÇ
j - Ç i - Ç jL) 2 u j - i - j L 5 0

for a Jacobi field on solutions of the Lagrange equations for L. This equation
is the Lagrange equation for the vertical extension LV of the Lagrangian L
(Mangiarotti and Sardanashvily, 1998; see also Dittrich and Reuter, 1992).

Let us consider the quadratic Lagrangian (31) with a Riemannian mass

tensor mij. The corresponding Lagrange equations are equivalent to the geode-

sic equation (8) for the linear connection

K l 0
m 5 0, K l i

m 5 ( 2 m 2 1)ik{ l k m } (47)

where { l k m } are the Christoffel symbols of the metric (33). This metric is

not necessarily Riemannian. Therefore, given a reference frame (x0, x l ), let

us consider another metric
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g 00 5 2 1, g 0i 5 0, gij 5 2 mij (48)

which is always Riemannian. However, its covariant derivative with respect

to the connection K (47) does not vanish. We have

¹ l g 00 5 ¹ l gik 5 0, ¹ l g 0k 5 { l k0} Þ 0

Nevertheless, due to the condition (46), the well-known formula

#
b

a

(g l m xÇ a ¹ a u l xÇ b ¹ b u m 1 R l m a n u l u a xÇ m xÇ n ) dt

1 g l m xÇ a ¹ a u l u8 m ) t 5 a 2 g l m xÇ a ¹ a u l u8 m ) t 5 b 5 0 (49)

holds for a Jacobi vector field u along a geodesic c. Accordingly, the following

assertions also hold (Kobayashi and Nomizu, 1969).

Proposition 10. If the sectional curvature R l m a n u
l u a xÇ m xÇ n is nonpositive,

a geodesic motion has no conjugate points.

Proposition 11. If the sectional curvature R l m a n u
l u a v m v n , where u, v are

arbitrary unit vectors on a Riemannian manifold X, exceeds k . 0, then for

every geodesic the distance between two consecutive conjugate points is at

most p / ! k.

For instance, let us consider a one-dimensional motion described by

the Lagrangian

L 5
1

2
(xÇ 1)2 2 f (x1)

where f is a potential. The corresponding Lagrange equations are equivalent

to the geodesic one on the 2-dimensional space R2 with respect to the connec-

tion K whose nonzero component is { 0
1

0} 5 2 - 1 f . The curvature of K has

the nonzero component

R101
0 5 - 1{ 0

1
0} 5 2 - 2

1 f

Choosing the Riemannian metric (48)

g11 5 2 1, g 01 5 0, g 00 5 2 1

we come to the formula (49)

#
b

a

[(xÇ m - m u1)2 2 - 2
1 f (u1)2] dt 5 0

for a Jacobi vector field u which vanishes at points a and b. Then we obtain

from Proposition 10 that, if - 2
1 f , 0 at points of c, this motion has no
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conjugate points. In particular, let us consider the oscillator f 5 k(x1)2/2. In

this case, the sectional curvature is R 01 01 5 k, while the half-period of this

oscillator is exactly p / ! k in accordance with Proposition 11.
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